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This paper attempts to establish a psychophysical basis for both stationary (tension in chord sonorities) and transitional (resolution
in chord progressions) harmony.Harmony studies the phenomenon of combining notes inmusic to produce a pleasing effect greater
than the sum of its parts. Being both aesthetic and mathematical in nature, it has baffled some of the brightest minds in physics
and mathematics for centuries. With stationary harmony acoustics, traditional theories explaining consonances and dissonances
that have been widely accepted are centred around two schools: rational relationships (commonly credited to Pythagoras) and
Helmholtz’s beating frequencies. The first is more of an attribution than a psychoacoustic explanation while electrophysiological
(amongst other) discrepancies with the second still remain disputed. Transitional harmony, on the other hand, is a more complex
problem that has remained largely elusive to acoustic science even today. In order to address both stationary and transitional
harmony, we first propose the notion of interharmonic and subharmonic modulations to address the summation of adjacent and
distant sinusoids in a chord. Based on this, earlier parts of this paper then bridges the two schools and shows how they stem from
a single equation. Later parts of the paper focuses on subharmonic modulations to explain aspects of harmony that interharmonic
modulations cannot. Introducing the concept of stationary and transitional subharmonic tensions, we show how it can explain
perceptual concepts such as tension in stationary harmony and resolution in transitional harmony, by which we also address the
five fundamental questions of psychoacoustic harmony such as why the pleasing effect of harmony is greater than that of the sum
of its parts. Finally, strong correlations with traditional music theory and perception statistics affirm our theory with stationary and
transitional harmony.

1. Introduction

Even though it is one of the most important components in
music, and possibly themost widely studied [1], the definition
of harmony differs vastly across time, genre, and individuals,
reflecting how little is understood about it [2, 3].

There are three aspects to the complete understanding
of our perception of harmony, which we will, for brevity,
refer to as what, why, and when. The what of harmony refers
to an attribution to a defining quality. Its why goes further
to explain the means by which such a quality ascribes to
consonance or dissonance (or even sentiment or emotions).
Finally, it should be recognized that the same harmony
perceived as consonant in one context can be perceived as
dissonant in another. This takes the what and why of sta-
tionary harmony (sonorities) into the context of transitional

harmony (progression). We refer to this as the when of
harmony and it has remained largely unaddressed by acoustic
science.

1.1. Background. Early works effectively attributed the what
of harmony to rational relationships [1, 4]. This ascribes
a chord’s consonance to the ratio amongst its contributing
string lengths (and consequently, wave periods and funda-
mental frequencies), being fractional with integer numera-
tors and denominators. A fascinating number of esteemed
mathematicians, physicists, and philosophers have made
different contributions in this aspect. The development of
the Pythagorean tuning system is commonly credited to
Pythagoras in the fourth century BC [3, 5, 6]. Euclid wrote the
earliest surviving record on the tuning of the monochord [7]
and documented numerous experiments on rational tuning
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[8]. Aristotle and Plato made various contributions to the
development of ancient Grecian (rationally scaled) music
that was later integrated into the diatonic system [8, 9].
Ptolemy developed the syntonic diatonic system as early as
the second century [10]. Euler proposed a grading system of
chord aesthetics based on the assertion that the notes have a
least common multiple (i.e., that they are rational) [11]. Since
string lengths correspond to wavelengths, which correspond
to wave period, and since notes used in harmony are taken
from the scale, it can be said that the Pythagorean school
effectively attributes harmony to temporal features.

It was not until 1877 that Helmholtz pioneered the
psychoacoustic approach [3, 8, 12, 13]. Isolating adjacent
harmonic sinusoids from different notes using specifically
devised acoustic resonators, he was able to record how
amplitude modulation that resulted from their summation
grew perceptually unpleasant as their modulation frequency
increased towards a certain threshold [8], thus attributing dis-
sonance to what he called beating frequencies and addressing
the questions what sounds bad and why. Numerous others
[14–25] conducted further studies in this approach, while
others raised several questions with Helmholtz’s theory [13,
17, 26]. For example, Plomp and Levelt [12] and Schellenberg
and Trehub [27] have separately shown that consonances
and dissonances are still perceived in harmonies with pure
tones (tones without harmonics). Itoh [28] and Bidelman
[29], amongst others, also showed that electrophysiolog-
ical responses to pure-tone intervals did not agree with
Helmholtz. All in all, the Helmholtz school attributes har-
mony to frequency features and comprises a large part of what
is referred to in this paper as interharmonic modulations.

In 1898, a notable but short-lived [3] attempt at what
sounds good and why was seen in Stumpf ’s tonal fusion
theory [30], which theorized that harmony was the effect the
harmonics of its component notes fusing together to sound
like a single note with a common fundament [12, 13, 26, 30].

Because of the nonlinear relationship between tonal scale
and frequency, scales derived from rational lengths of a string
tended to leave certain intervals more rational than others.
With this realization, Western music eventually adopted
12-tone equal temperament scale. This equally segments
the octave in the log-frequency scale [31] such that each
semitone interval is a factor of 21/12, evenly redistributing
the dissonances to accommodate to different keys. Despite
its late adoption, original development of this scale predates
Helmholtz to the 1500s. Vincenzo Galilei (father of Galileo
Galilei) made the earliest known estimate of this in the
West by approximating 21/12 with 18/17 [32], while Zhu
was credited for perfecting it in the East by computing it to
accurately to the 25th decimal, both in the 1580s [12]. The
earliest recorded estimate of this in the East was by He in the
5th century, whose estimate was already about as accurate as
Galilei’s [33, 34].

In Rameau’s Treatise on Harmony [1], which paved the
foundations of harmony in modern music theory, notes of
basic chords are derived from the division of the length of a
common string [35]. However, this remains disjoint with the
rest of the treatise, and modern music theory remains more

of a compilation of rules and deductions from the pattern
clustering of perceptual experiences [36–42], addressing the
questions what sounds good and when without the scientific
reasoning of why [37].

More recently, several studies have found high correla-
tions betweenharmony andperiodicitymeasures of the resul-
tant signal [43, 44].This novel leap advances the Pythagorean
school while presenting a persuasive attribute of what sounds
good and why.

Several notable studies have also been conducted that
relate harmony to nonacoustic attributes such as statistics
and geometry. An example is Tymoczko’s exploration of how
multidimensional geometric patterns correlate strongly with
patterns that exist in historic harmony use, addressing what
sounds good and when [45–47]. Authors in [48] explored
properties of musical scales on the Euler lattice, addressing
the what of harmony. Numerous others such as [49–51] have
worked on other mathematical relationships in harmony,
addressing its what.

Yet others have looked towards a biological rationale
towards our perception of harmony to address what sounds
good and why. A recent example is Purves’ attribution of the
effect of the tonal scale to the familiarity of excited or subdued
speech [14, 52–54]. Other examples are the works of [43, 55,
56] in the neuronal mechanism of harmony perception.

1.2. Scope. In this work, we first seek a mathematical resolu-
tion across both acoustic schools by a single psychophysical
theory. To start off somewhere familiar, we first describe
the concept of interharmonic modulations (which adopts
and encompasses Helmholtz’s beating frequencies), from
which we then introduce the concept of subharmonic [57]
modulations and show how the two categories ofmodulations
relate. (At some point afterwhich, we also showhow a specific
case of subharmonicmodulations addresses Pythagoras, thus
integrating the two schools.) After explaining how perceptual
tensions [18, 36, 58, 59] inmusical harmonymay be identified
in subharmonic tension in the stationary context, we con-
tinue to explain how perceptual tension resolutions [18, 42] in
transitional harmony (chord progressions) may be visualized
in subharmonic trajectories. By these, we address the what,
why, and when of harmony. Numerical results show strong
to near-complete correlations with perception and chord-use
statistics that are presented towards the end of the paper.

By applying our theory and equations, we will answer
the five fundamental questions of psychoacoustic harmony.
These are as follows.

(1) The phenomenon that the effect of harmony is greater
than the sum of its parts [18, 60]:
𝜀 {𝑥1 + 𝑥2 + 𝑥3} ≫ 𝜀 {𝑥1} + 𝜀 {𝑥2} + 𝜀 {𝑥3} (1)

where 𝜀 denotes the harmonious effect of 𝑥1, 𝑥2, and𝑥3 representing notes of the chord and ‘+’ denotes
simultaneous presentation or cumulation.

(2) There are the definition and explanation of stationary
harmony, i.e., what sounds good and why, or, math-
ematically, to quantify 𝜀{𝑋�푛}, where 𝑋�푛 represents
chord 𝑛.
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(3) There are the definition and explanation of transi-
tional harmony, i.e.,what sounds good,why, andwhen,
or, mathematically, to quantify 𝜀{𝑋1 󳨀→ 𝑋2}, where
‘ 󳨀→’ denotes transition from one chord to another.

(4) We have the following phenomena.

(a) A chord that sounds better than another out of
context can sound worse than being in context
[42]. Given 𝜀{𝑋2} > 𝜀{𝑋3} this shows that𝜀{𝑋1 󳨀→ 𝑋2} < 𝜀{𝑋1 󳨀→ 𝑋3}

(b) A chord that sounds better than another in one
context can sound worse than being in another
context [42]. Given 𝜀{𝑋4 󳨀→ 𝑋2} > 𝜀{𝑋4 󳨀→𝑋3} this shows that 𝜀{𝑋1 󳨀→ 𝑋2} < 𝜀{𝑋1 󳨀→𝑋3}

(5) We have the phenomenon that the transition from
a low-tension chord to a high-tension one can still
bring about the effect of tension release (resolution).
Given 𝜀{𝑋1} < 𝜀{𝑋2} this shows that 𝜀{𝑋1 󳨀→ 𝑋2} >0

Apart from Pythagoras [3, 5, 6] andHelmholtz [8], we will, in
closing, also briefly explain how our theory mathematically
bridges other subsidiary psychophysical theories such as
Stumpf [30], Euler [11], Galilei [33, 34, 61], and Zhu [12].

2. A Universal Theory of Harmony

In this section, a psychophysical basis for harmony is pro-
posed as follows.

The human perception of harmony is composed of audi-
tory events produced by the combination of sinusoids that
make up each note in the harmony. These may be classified
into interharmonic and subharmonic modulations.

First-order interharmonic modulations are those pro-
duced by the interplay amongst adjacent sinusoids across
differing notes.These are loosely categorized by the frequency
of the resultant amplitude modulation into dissonant beating
frequencies [8] and consonant low-frequency modulations,
triggering a variety of emotions according to their modu-
lation and carrier frequencies. Second-order interharmonic
modulations are produced by the alignment of first-order
ones. The consonance types of different intervals may be
identified according to patterns cast by interharmonic mod-
ulations on the interharmonic plot.

Despite the significance of interharmonic modulations,
the effect of consonances and dissonances is still experienced
in the absence of harmonics with pure tone harmonies. This
implies that interharmonic modulations are not exclusive in
our perception of harmony [12, 13, 17, 26–29]. From this, it
may be deduced that subharmonic modulations also play a
significant role.

Subharmonic modulations are produced by the interplay
of sinusoids much further apart than interharmonic modula-
tions. Unlike interharmonicmodulations, which are analysed
primarily in the frequency domain, subharmonic modula-
tions are analysed primarily in the temporal domain and they
are comprised of twoparts.Thefirst part is subharmonicwave

formation, which occurs with the summation of component
waveforms from each note to produce a waveform largely
periodic to a common subharmonic frequency. The second
is subharmonic wave deformation (an example is provided
in Supplementary Video S1.), which is a distortion to every
successive period of this composite subharmonic waveform
due to the imperfect alignment of contributing wave periods.
Stationary tension and transitional resolution may both be
derived from subharmonic features which serve as measures
of stationary and transitional harmony.

In order to explain interharmonic and subharmonic
modulations in detail and how they unify the two prevailing
schools of harmony, we will start from first principle by
looking at the notes of a chord as the sum of their composite
sinusoids.

2.1. Modulations in Sinusoidal Summation. Whenwaveforms
of two notes, 𝑥1(𝑡) and 𝑥2(𝑡), at amplitudes 𝛼 and 𝛽, respec-
tively, are presented together, the result may be expressed as
a sum of their composite sinusoids such that

𝛼𝑥1 (𝑡) + 𝛽𝑥2 (𝑡) = 𝛼 �푁∑
�푛=1

𝑞�푛 cos (2𝜋𝑛𝑓1𝑡 + 𝜌�푛)
+ 𝛽 �푀∑

�푚=1

𝑟�푚 cos (2𝜋𝑚𝑓2𝑡 + 𝜑�푚)
(2)

where, respectively, 𝑛 and 𝑚 represent the individual har-
monics from each note, 𝑁 and 𝑀 represent the highest
harmonics that need to be considered because of audible
range, 𝑞�푛 and 𝑟�푚 represent the amplitude coefficients of
each harmonic, 𝑛𝑓1 and 𝑚𝑓2 represent the frequencies of
each harmonic with 𝑓1 and 𝑓2 representing the fundamental
frequency of each note, 𝜌�푛 and 𝜑�푚 represent the starting
phases of each harmonic, and 𝑡 represents monotonically
increasing time.

Isolating a single pair of adjacent sinusoids from differing
notes we get

𝐴ℎ1 (𝑡) + 𝐵ℎ2 (𝑡) = 𝐴 cos𝜔1𝑡 + 𝐵 cos𝜔2𝑡 (3)

where ℎ1(𝑡) and ℎ2(𝑡) are the pair of harmonics from differing
notes, 𝐴 = 𝛼𝑞�푛, 𝐵 = 𝛽𝑟�푚, 𝜔1 = 2𝜋𝑛𝑓1, and 𝜔2 = 2𝜋𝑚𝑓2.

Since we are considering themodulating frequency resul-
tant of the summation of both sinusoids spanning all phase
combinations, it no longer matters which starting phase we
take reference from. Hence, 𝜌�푛 and 𝜑�푚 can both be set to zero.

In the case of A=B, the resultant amplitude modulation
is trivial and, as illustrated in Figure 1 (left), is given by the
sum-to-product rule

cos𝜔1𝑡 + cos𝜔2𝑡 = 2 cos �𝜔2 𝑡 cos𝜔𝑡 (4)

where �𝜔/2 is the normalized modulating frequency and is
given by

�𝜔2 = 󵄨󵄨󵄨󵄨𝜔1 − 𝜔2󵄨󵄨󵄨󵄨2 (5)
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Figure 1: Summation of sinusoids of equal (left) versus unequal (right) amplitudes. Notice the difference in modulating frequencies even
though frequencies of component sinusoids remain unchanged.

𝜔 is the normalized carrier frequency given by

𝜔 = 𝜔1 + 𝜔22 (6)

and the values of A and B are normalized to 1.
However, inmost cases,𝐴 ̸= 𝐵, and the problem becomes

nontrivial, because of the change in modulation frequency as
the modulating waveform no longer crosses zero.This can be
seen in Figure 1 (right).

We approximate the summation of these sinusoids to be

𝐴 cos𝜔1𝑡 + 𝐵 cos𝜔2𝑡 ≈ 𝐵 − 𝐴
+ 2𝐴 󵄩󵄩󵄩󵄩󵄩󵄩󵄩cos2−�퐴/�퐵�𝜔2 𝑡󵄩󵄩󵄩󵄩󵄩󵄩󵄩 cos𝜔�푐𝑡

(7)

where 𝜔�푐 is bounded by 𝜔1 and 𝜔2 and is approximated to
be 𝜔 (which denormalizes to 𝑓); ‖cos2−�퐴/�퐵(�𝜔/2)𝑡‖ denotes
the magnitude of cos2−�퐴/�퐵(�𝜔/2)𝑡 signed according to the
quadrant of (�𝜔/2)𝑡. 𝐵 denotes the larger of the amplitudes
and 𝐴 and 𝐵 are normalized to 𝐴 = 1.

When𝐴 = 𝐵, this simplifies to (4), where the modulating
frequency is �𝜔/2.

However, as 𝐵 increases with respect to 𝐴, 2 − 𝐴/𝐵
gravitates towards 2, and

𝐴 cos𝜔1𝑡 + 𝐵 cos𝜔2𝑡 ≈ 𝐵 − 𝐴 + 2𝐴 cos2�𝜔2 𝑡 cos𝜔�푐𝑡
≈ 𝐵 + 𝐴 cos�𝜔𝑡 cos𝜔�푐𝑡

(8)

for which the modulating frequency is �𝜔.
We can see from the plots in Supplementary Figure S1 that

this estimation is accurate for values of B marginally larger
than A to much larger than A.

For consistency, the effective modulating frequency for
the case of 𝐴 = 𝐵 will be considered by the frequency of its
rectified modulating waveform which is then, similarly, �𝜔.
In music, we are interested in this frequency in hertz. Hence,
we denormalize this to be

Δ𝑓 = 󵄨󵄨󵄨󵄨𝑓1 − 𝑓2󵄨󵄨󵄨󵄨 (9)

In the next two sections, wewillmove on to see how this is
applicable not only to the summation of adjacent harmonics
in interharmonicmodulations but also to distant sinusoids in
subharmonic modulations.

3. Interharmonic Modulations

Interharmonicmodulation refers tomodulations across adja-
cent pairs of sinusoids from different notes that fall within a
certain threshold, with modulation frequency corresponding
to �𝑓 in (9).

Figure 2 shows a plot of all harmonics of notes c3 (blue)
and eb3 (red) under 3 kHz. All adjacent sinusoids less than
120Hz apart are identified in the figure, with their centre, 𝑓,
and modulating, Δ𝑓, frequencies labeled accordingly.

3.1. Beating Frequencies and Low-Frequency Modulations.
Interharmonic modulations with �𝑓 that increase towards
a certain threshold are known to become increasingly dis-
sonant, and, as coined by Helmholtz, are known as beating
frequencies [8]. Interharmonic modulations with small �𝑓,
on the other hand, contribute to the harmonious effect
perceived in consonance [65]. Figure 3 illustrates this.

3.2. Perceptual Responses across the �f-𝑓 Feature Space. It
is known that different combinations of notes contribute to
different emotive valences [66]. This too may be decom-
posed into a sum of its harmonics. Hence, further to the
consonances and dissonances, emotive responsesmay also be
mapped onto the interharmonic plot. Although, as onemight
imagine, such responses would be different for every individ-
ual, we can plot the response for an individual as an example.
Figure 4 shows an example of auditory responses triggered in
the mind of the (first) author when exposed to frequencies
in the horizontal (𝑓) axis modulated by frequencies in the
vertical (�f ) axis.The value of𝑓 is indicated in the horizontal
axis in bothHz and its corresponding note names.The degree
of pleasure derived from interharmonic modulation is coded
in the colored background as a reference. The green regions
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Figure 2: Identifying the interharmonic modulations across c3 and eb3.
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Figure 4: Example of auditory responses triggered by pure-tone frequencies on the horizontal axis modulated at frequencies on the vertical
axis. Green, yellow, orange, red, and black indicate pleasing, somewhat pleasing, unpleasant, dissonant, and beyondbeating range, respectively.

are perceived to be pleasing, yellow as somewhat pleasing,
orange as unpleasant, but not to the point of annoying, red
as dissonant, and black as beyond beating range. The black
dots mark the locations of the thoughts or emotions labelled.
This shows that interharmonic modulations bring about a
large variety of thoughts or emotions. If several of these are
triggered simultaneously when just one pair of notes sound
simultaneously, one can imagine how ten fingers on a piano
or all the instruments in an orchestra could combine several
(thoughts or emotions) to paint stories on the interharmonic
feature-space over time.

3.3. Intervals and Second-Order Modulations on the �f-𝑓 Feature Space. The interharmonic modulations of each
interval within an octave are similarly plotted in Figures 5,
6, and 7. However, this time, the plots are in the linear scale.
Green, yellow, orange, and red, again, represent regions of
different degrees of consonance or dissonance according to
the same color scheme as Figure 4. However, because this
time both horizontal and vertical axes are in the linear scale,
consonance-dissonance levels that populate the space on the
nonlinear plot in Figure 4 now populate lower right regions
of these linear plots. The remaining upper left regions are
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Figure 5: Interharmonic plots for all intervals within an octave regarded, in classical music theory, to be perfectly consonant with a root of
g3. These are, namely, the Perfect 4th (g3 and c4), Perfect 5

th (g3 and d4), and Octave (g3 and g4) intervals.

then populated with dissonance levels from [12].These colors
provide a simple background reference for the dark blue
dots that each represent a modulation at their corresponding
�𝑓 and 𝑓 values, which results from the summation of
neighboring pairs of sinusoids (at frequencies 𝑓 + �𝑓/2 and𝑓 − �𝑓/2) of the notes specified by the indicated interval.
Also, for reference, are the twowhite lines that run across each
plot, indicating the locations where the values of �𝑓 coincide
with a semitone (gentler slope) and a tone (steeper slope) of
the corresponding values of 𝑓 (where �𝑓 = (21/12 − 1)𝑓
and �𝑓 = (22/12 − 1)𝑓, resp.). The semitone and the tone
are regarded as the most dissonant intervals up to halfway in
either direction around the cyclic chroma [12, 21, 54].

The plots of perfect consonances are presented in Fig-
ure 5. These intervals are described with a bit of a dilemma
in classical music theory [67]. They may be described as so
consonant that they sound almost like one note. As such, their
use contributes in a limitedway to harmony [15]. For example,
the use of perfect fifths is forbidden in parallel motion and

octaves are regarded as the same note in a different register
[42].

The interharmonic plot reveals the perceived traits of each
category of intervals in a way that explains why they sound
the way they do, and in a way music theory alone has never
been able to. As shown in Figure 5, the constellations formed
by interharmonic modulations of perfect intervals line up
almost horizontally (While the methods used in this study
are applicable with any form of tuning, only equitempered
tuning is assumed in the computations in this section. This
is consistent throughout this paper, unless otherwise stated.).
Since each point that falls on the same horizontal has the
same �𝑓, this means that they modulate synchronously and
may be perceived collectively as a single modulation. This
may be interpreted as fewer modulating microevents taking
place, making them less interesting than other consonance
intervals.

Dissonant intervals are presented in Figure 7. As can be
seen in the figure, these intervals have points that fall mostly
within the central dissonant region and line up along the
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Figure 6: Interharmonic plots for all intervals within an octave regarded, in classical music theory, to be imperfectly consonant with a root
of g3. These are, namely, the Minor 3rd (g3 and bb3), Major 3rd (g3 and b3), Minor 6th (g3 and eb4), and Major 6th (g3 and e4) intervals.

two dissonant lines. Evenly spaced points along a line that
passes through the origin also reveal that their �𝑓 share a
harmonic relationship. This has a similar (although this is
somewhat lesser) redundant effect to that of the synchronous
modulation described with perfect consonances.

Consonances that properly contribute to harmony are
called imperfect consonances [67] and are presented in
Figure 6. As can be seen in the figure, imperfectly consonant
intervals have points better distributed. This may be inter-
preted as erratic modulations that create a continuous stream
of unpredictable events to stimulate aural attention, and thus,
interest.

A lot of work has already been done on interharmonics
since Helmholtz [12, 19–21, 24, 25]. While the main focus of
this work is not interharmonics, one purpose of this section
is, nevertheless, to provide sufficient background to complete
our theory of how the human experience of stationary
harmony is based aroundmodulations of both interharmonic
and subharmonic nature. From the interharmonic plots
in Figures 5–7, a simple predictor of dissonance may be
identified to be

𝐶 (�𝑓) = 𝐶(�𝑓
𝑓 )

= �푛∑
�푖=1

[2�푟𝑙𝑜𝑤𝑒𝑟/12 − 1 < �𝑓�푖𝑓�푖 < 2�푟𝑢𝑝𝑝𝑒𝑟/12 − 1]
(10)

where �𝑓 will be our shorthand for �𝑓/𝑓, 𝐶(�𝑓), or𝐶(�𝑓/𝑓) referring to the number of interharmonic mod-
ulations that fall within the central region of dissonance
region, 𝑖 iterates through all interharmonic modulations on
the plot, 𝑛 is the total number of modulations considered,
�𝑓�푖 and 𝑓�푖 refer to the pair of �𝑓 and 𝑓 that describe the 𝑖th
interharmonic modulation, respectively, and 𝑟�푙�표�푤�푒�푟 and 𝑟�푢�푝�푝�푒�푟
define the lower and upper boundaries of the region on the
interharmonic plot, respectively.

In this section, we have seen how interharmonic mod-
ulations are significant to our perception of consonance,
dissonance, and emotive response in music. When listening
to a duet of instruments with no overtones such as a
sinewave theremin or a very pure musical saw, we realize that
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Figure 7: Interharmonic plots for all intervals within an octave regarded, in classical music theory, to be dissonant with a root of g3. These
are, namely, the Minor 2nd (g3 and ab3), Major 2nd (g3 and a3), Minor 7th (g3 and f4), Major 7th (g3 and f♯4), and Diminished 5th (g3 and db4)
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consonance, dissonance, and emotion remain present even in
harmony without harmonics (i.e., across a well-spaced pair
of fundamental frequencies alone). This is just one amongst
the several different ways [12, 13, 17, 28, 68, 69] from which

we can deduce that interharmonic modulations cannot be
the only determinant of our perception of harmony, which
thereby leads to our hypothesis on subharmonic modula-
tions.
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Figure 8: Subharmonic wave formation and deformation in the C and Cm7 chords.

4. Subharmonic Modulations

Apart from the modulations that arise from the summation
of adjacent harmonic sinusoids across differing notes, we
can (as explained above) deduce that another category of
modulations is significant to our perception of harmony. We
call these subharmonic modulations. There are two levels
of subharmonic modulations, which we dub subharmonic
wave formation and subharmonic wave deformation. In this
section, we will show how these are significant to our per-
ception of not only stationary harmony, but also transitional
harmony.

Figure 8 shows the waveforms of a C Major chord (C)
and a C minor 7 chord (Cm7) composed of the fundamental
sinusoids of each composite note. We let each sinusoid start
at phase zero since; for purpose of example, we are only
interested in wave period. Only the fundament needs to be
considered for the same reason. In both cases, the waveform
resultant of this summation repeats at a frequency approx-
imately subharmonic to all its composite waveforms. In the
figure, its period is marked 𝑇�푠�푢�푏. We call this subharmonic
wave formation and say that 𝑇�푠�푢�푏 is a common subharmonic
to all its composite waveforms.

In the case of the C chord, as shown in the figure, each
composite sinusoid crosses zero at nearly the same point
around 𝑡 = 𝑇�푠�푢�푏. As marked in the figure, Δ𝑡 (which is the
difference between the first and the last negative-to-positive
zero-crossing around the 𝑡 = 𝑇�푠�푢�푏 region) is small. However,
in the case of the Cm7 chord, Δ𝑡 is much larger. One can
imagine that each successive period of the resultantwaveform
looks less and less like the first as it gets more and more
deformed. This happens slowly for the C chord because of

the small Δ𝑡 but faster for the Cm7 because of the large Δ𝑡.
We call this subharmonic wave deformation. Supplementary
Video S1 compares subharmonic wave deformation in a low-
tension C chord to that in a high tension Cm7 chord.

Recalling our wave equation from (3), we can rewrite𝐴 cos𝜔1𝑡 + 𝐵 cos𝜔2𝑡, or 𝐴 cos 2𝜋𝑓1𝑡 + 𝐵 cos 2𝜋𝑓2𝑡, as𝐴 cos 2𝜋𝑓1𝑡 + 𝐵 cos 2𝜋𝑓2𝑡
= 𝐴 cos 2𝜋 (𝑘1𝑓�푠�푢�푏 + Δ𝑓1) 𝑡

+ 𝐵 cos 2𝜋 (𝑘2𝑓�푠�푢�푏 + Δ𝑓2) 𝑡
(11)

where 𝑓�푠�푢�푏 is an approximate common factor of 𝑓1 and𝑓2, 𝑘1 and 𝑘2 are integer multipliers, and Δ𝑓1 and Δ𝑓2 are
small values that balance the equation by making up for the
discrepancies that arise with finding a common factor.

In (11), two fundamental frequencies 𝑓1 and 𝑓2 are
described as the multiple of a lower subharmonic frequency
that is common to them (𝑓�푠�푢�푏). We call this their common
subharmonic.

Since all harmonics are multiples of their fundamental,
a subharmonic to any fundamental would inherently be
subharmonic to all its harmonics. For this reason, only the
fundamental of each note needs to be considered.

Since harmony in music is commonly composed of
more than just two notes, we generalize this to describe
fundamentals and common subharmonics from any number
of notes to get

N∑
�푖=1

𝐴 �푖 cos 2𝜋𝑓�푖𝑡 = 𝐴1 cos 2𝜋 (𝑘1𝑓�푠�푢�푏 + Δ𝑓1) 𝑡
+ 𝐴2 cos 2𝜋 (𝑘2𝑓�푠�푢�푏 + Δ𝑓2) 𝑡 + ⋅ ⋅ ⋅
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+ 𝐴 �푖 cos 2𝜋 (𝑘�푖𝑓�푠�푢�푏 + Δ𝑓�푖) 𝑡 + ⋅ ⋅ ⋅
+ 𝐴�푁 cos 2𝜋 (𝑘�푁𝑓�푠�푢�푏 + Δ𝑓�푁) 𝑡

(12)

where𝑁 is the number of notes in the chord, 𝑖 cycles through
each of them, and 𝐴 �푖 is the amplitude coefficient of note 𝑖.

Beyond this point, it would be easier to visualize subhar-
monics in the time domain.With the fundamental frequency
of note 𝑖 given by

𝑓�푖 = 𝑘�푖𝑓�푠�푢�푏 + Δ𝑓�푖 (13)

the fundamental period of each note 𝑖 is then
𝑡�푖 = 1𝑓�푖 =

1𝑘�푖𝑓�푠�푢�푏 + Δ𝑓�푖 (14)

where 𝑡�푖 is the fundamental period of the note.
Hence, the period of any common subharmonic can be

expressed as 𝑘�푖𝑡�푖. We can then compensate for nonintegral
discrepancies in period rather than in frequency. In doing so,
we get

𝑇�푠�푢�푏 = 1𝑓�푠�푢�푏 = 𝑘�푖𝑡�푖 + Δ𝑡�푖 (15)

for all 𝑖, where 𝑇�푠�푢�푏 is the common subharmonic wave
period (we will simply say common subharmonic) of the
chord. What carries over as 𝑘�푖𝑡�푖 is essentially just the 𝑘th
subharmonic of note 𝑖 which lies in the region of 𝑇�푠�푢�푏. Since
this is true for all pairs of 𝑘�푖 and 𝑡�푖 across all values of 𝑖 when
they are each balanced by appropriate 𝑡�푖, 𝑖 may be dropped
from the left hand side of the equation.

Although the common subharmonic was introduced as
the period between primary zero crossings as in Figure 8, we
shall, for computational simplicity, redefine it as the mean of𝑘�푖𝑡�푖 across all notes of the chord. Hence,

𝑇�푠�푢�푏 = 𝑘�푖𝑡�푖 (16)

Figure 9 shows how the period of each subharmonic in the C
Major chord from Figure 8 may be plotted. The left column
first shows how the period of each subharmonic of c3 may be
plotted in red. The right column then extends this to every
remaining note in the chord, with orange, yellow, and blue
for the notes e3, g3, and c4, respectively. It may be seen in the
right column that a subharmonic period from every note in
the chord nearly coincides at around 30ms. Hence, we say
that this is its common subharmonic, 𝑇�푠�푢�푏, as defined in (16).

Having reduced the waveform plot to subharmonic peri-
ods in the vertical axis, we can represent time spanned by each
subharmonic in the horizontal axis.We will do this for a song
stanza in the next section, in a subharmonic plot.

4.1. Subharmonic Modulations in Stationary Harmony. Fig-
ure 10 shows an example of a subharmonic plot. In the
horizontal axis there is time in bars and in the vertical axis
there is the subharmonic wave period in milliseconds. Note
that the subharmonic axis runs top down to put shorter
wave periods at the top because they correspond to higher

frequencies. Larger wave periods, which correspond with
lower frequencies sit conversely at the bottom. The tails that
run horizontally represent the span of time covered by each
note. Subharmonics are colored tomatch their corresponding
notes on the music score. For example, in the first bar, all
subharmonics of f#5 are marked out in red, followed by
d5 in orange, a4 in yellow, d4 in green, a3 in blue, and
d3 in purple. The musical score runs in parallel at the
bottom of the plot as reference. Once again, all plots and
computations in our examples assume equal temperament
unless stated otherwise. This example shows the opening
stanza of Pachelbel’s Cannon in D [70] and focuses on
stationary harmony, leaving transitional harmony to a later
example.

Subharmonics. For every bar, the dashes that flush with the
reference point at 0ms mark 0 × 𝑡0. Carrying on top down
with each bar in accordance to color, we get subharmonics at1 × 𝑡0, 2 × 𝑡0, 3 × 𝑡0, 4 × 𝑡0, etc.
Notes and Melody Line. Since the topmost dash of each color
for every bar below the 0ms reference represents 1 × 𝑡0,
they relate to the fundamental period of each note; of these,
the topmost ones of every bar across all colors mark the
melody line, f#5-e5-d5-c

#
5-b4-a4-b4-c

#
5. (They are red in this

particular example.) Hence, it is easy to interpret the melody
line in a subharmonic plot.The periods, 𝑡�푖, of each note of the
melody aremarked against the vertical axis inmilliseconds as
well as their common note names.

Chords and Coincidence. Common subharmonics may be
visualized in regions with the (approximate) coincidence of
dashes of every color. Again, the common subharmonics
(𝑇�푠�푢�푏) of each chord in the stanza are marked out against the
vertical axis in both milliseconds and their respective chord
names.

Key. Every note of the diatonic shares a common subhar-
monic. Hence, it is possible to identify the key of a song by its
common subharmonic, assuming minimal deviations from
its key. The common subharmonic associated with the key of
this song is marked out much further down the plot. Dotted
lines indicate discontinuity. (This part of the figure is plotted
in just intonation to avoid the snowballing of Δ𝑡�푖 to better
illustrate this.)

Stationary Tension. Most of the time, contributing subhar-
monics from different notes are not precisely coincident.
Major chords have better coincidence thanminor chords, and
triads coincide better than sevenths and extended chords.
With subharmonic modulations, perceptual tension arises
with the noncoincidence of common subharmonics. Nonco-
incidence is measured by an overall Δ𝑡 as reflected in Figures
8 and 10. We call this its (stationary) subharmonic tension.

This Δ𝑡 is given by the difference between the largest and
smallest subharmonics in the chord that coincides around𝑇�푠�푢�푏.

Δ𝑡 = [𝑘�푖𝑡�푖]�푚�푎�푥 − [𝑘�푖𝑡�푖]�푚�푖�푛 (17)
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Figure 9: Plotting subharmonic wave periods of the C Major chord.

where [𝑘�푖𝑡�푖]�푚�푎�푥 and [𝑘�푖𝑡�푖]�푚�푖�푛 denote the largest and the
smallest subharmonics in the chord that (nearly) coincides
around 𝑇�푠�푢�푏 (mathematically, they are the maximum and
minimum values of 𝑘�푖𝑡�푖, resp.).Δ𝑡 and𝑇�푠�푢�푏 are the primary features of stationary tension.Δ𝑡 may be normalized by expressing it like a duty cycle by
taking

�𝑡̂ = Δt𝑇�푠�푢�푏 (18)

From Figure 3 in the section on interharmonic modulation,
recall that dissonances increased and decreased with inter-
harmonic modulation frequency while consonances behaved
inversely. This happens only within a certain range. When
interharmonic modulation frequency shrinks to the brink of
zero, it falls below musical significance.

Subharmonic tension behaves similarly. Figure 11
describes different types of harmony on the subharmonic
tension scale. As can be seen in the figure, our response
to subharmonic tension is likewise. Perceived dissonances
increase and decrease with subharmonic tension while
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Figure 10: Subharmonic plot of the opening stanza of Pachelbel’s Cannon inDwith period inmilliseconds on the vertical axis and time in bars
on the horizontal axis. Subharmonics are colored to match the color of their corresponding notes on the music score below.The subharmonic
tensions of each chord,�𝑡, are marked out on the plot with white arrows. Significant wave periods, along with common subharmonic periods,𝑇�푠�푢�푏, are marked against the vertical axis on the right. In the interest of visiting all common chords of the key, Em is used in the 7th bar instead
of G, which already occurs in the 5th bar. Considering the fact that this example is not used for transitional harmony, all chords are presented
in its root position at the expense of introducing parallel 5ths in the interest of normalization for fairer comparison.

perceived consonances behave inversely within common
range. Mathematically,

𝜀 {X} ∝ 1Δt̂�푋 (19)

where 𝜀{X} is the harmonious effect of chord X and Δt̂�푋 is its
stationary subharmonic tension (its Δt̂).

However, as described in the figure, modulations from
subharmonic tension fall below musical significance; the
effect of harmony drops to zero as modulations from subhar-
monic tension fall below musical significance. Hence, where
�t̂threshold is the said threshold of musical significance, as�t̂ <
�t̂threshold,

lim
��̂푡�㨀→0

𝜀 {𝑋} = 0 (20)

Thus, perceptual tensions and consonances are experienced
in slew-likemodulations of thewaveform at common subhar-
monic locations. (This is the effect of periodically changing
phase relationships amongst the contributing waveforms, for
which Δ𝑡 is a measure.) While there may be several common
subharmonics for every chord within reasonable range, we
theorize that our ears identifymostwith the shortest few. Sub-
harmonic consonances are described by gentler modulations
(small Δ𝑡) at the shortest common subharmonic locations
(short𝑇�푠�푢�푏), while subharmonic dissonances are described by
more turbulent ones (associated with absence of small Δ𝑡 at
short 𝑇�푠�푢�푏).

The sensation of a chord can be highly complex, with
different tensions and consonances perceived simultane-
ously, an experience inadequately represented by a single
term for dissonance. Attempting to rate every chord by its
dissonance level alone can be compared to rating every
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variety of chocolate in a candy store by only how sweet
or bitter it is. The advantage of �𝑡, as opposed to existing
correlates of harmony [3, 13, 43, 54], is the way it explains
abstract notions of perceptual tensions and consonances by
ascribing them to regions across the subharmonic spectrum
with a strong sense of attribution or identification. While,
for purpose of illustration, Figures 9 and 10 have shown
examples where a modal 𝑇�푠�푢�푏 (shortest 𝑇�푠�푢�푏 with smallest
�𝑡) is easiest to identify, we theorize complex chords with
ambiguous𝑇�푠�푢�푏 (where it is difficult to attribute the collection
of modulations experienced to a single modal); our ears often
identify with several common subharmonics simultaneously.
In other words indeterminate cases could possibly arise with
particularly discordant harmonies without small �𝑡 at short𝑇�푠�푢�푏. Thus, for programmatic analysis of a large number of
chords, it is, nevertheless, useful to have a single term to
represent the overall dissonance of each chord. For this, we
use

�̃𝑡 = 𝑛( 1
∑�푛:�푚 (1/𝑇�푠�푢�푏,�푗 (�𝑡�푗)�푐))

1/�푐

(21)

where a single term, �̃𝑡, represents the overall subharmonic
tension, 𝑇�푠�푢�푏,�푗 and �𝑡�푗 refer to individual candidates of 𝑇�푠�푢�푏
and �𝑡 with 𝑗 iterating through each candidate pair, 𝑐 is
the preemphasis (while 1/𝑐 serves as “post de-emphasis”),
and Σ�푛:�푚 denotes summing over the 𝑛 smallest values out
of a range of 𝑚 values considered. In our work, 𝑛 is always
chosen to be half of 𝑚 unless stated otherwise. Note that𝑇�푠�푢�푏,�푗 here serves as a weighting factor to weight down higher
subharmonics, which, as aforementioned, are less significant.
Inverting before (and rectifying after) summationmimics our
hearing by allowing smaller values of �𝑡�푗 to contribute better
towards a smaller �̃𝑡.

We will see how representative �̃𝑡 is of stationary har-
mony in the next section. But before that, we will first explain
subharmonic modulations in transitional harmony.

4.2. Subharmonic Modulations in Transitional Harmony.
While stationary harmony studies chord sonorities (how a
chord sounds on its own), transitional harmony deals with
chord progressions and resolutions (how chords transit from
one to another). It is remarkable how a low tension (conso-
nant) chord can transit to a high tension (dissonant) one yet
still bring about the perceptual effect of tension release (res-
olution) [18]. From this it may be deduced that transitional
harmony stands largely independent of stationary harmony,
even though both are considered when assigning harmony
in composition. Even though numerous studies have been
conducted on stationary harmony from the psychoacoustic
approach, work on transitional harmony remains primarily
nonpsychophysical.

Traditional classical music theory uses the term reso-
lution to describe the perception of tension released when
a chord is suitably followed by another chord [18]. With
subharmonicmodulation, we theorize that these abstract per-
ceptions of tensions releasedmay be identified and quantified
in the perceived trajectories of subharmonics as one chord
progresses to the next. Figure 12 illustrates this.

Figure 12 shows the opening line of Beethoven’s Moon-
light Sonata [71]. Before we begin our analysis, one should
note that unlike Pachelbel’s Cannon the use of arpeggios (bro-
ken chords) means that notes contributing to the harmony
may not necessarily start at the same time, but, when the
sustain pedal on the piano is applied, they sustain and overlap
until the end of each bar. The names of the chords formed
by the notes are labelled along the top of the score to aid the
reader in this analysis. Another thing to note would be the
fact that this piece maintains a strong sense of voice leading
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[72], which means that each note from a chord has strong
progressive associations with a note from the previous and
another from the succeeding chord. The subharmonics of all
notes that are associated in this way (i.e., of the same voicing)
across the song are codedwith the same color to aid the reader
in this analysis. For example, all notes in red on the music
score represent the bass (lowest) notes throughout the song,
and every subharmonic of these notes is portrayed in red.

We theorize that in chord transitions every subharmonic
(𝑘�푖𝑡�푖) that (nearly) coincides around the common subhar-
monic (𝑇�푠�푢�푏) of a succeeding chord is perceived to transit
from the nearest corresponding (i.e., of the same voicing)
subharmonics in the preceding chord. These transitions are
marked out by the arrows in Figure 12, which are colored
according to the notes they are associated with. Arrows are
usually convergent (with the exception of, for example, a basic
triad progressing onto an extended chord of the same root)
because the subharmonics of the succeeding chord always
identify with a common subharmonic whereas those of the
preceding chord usually do not.

The central hypothesis of transitional subharmonic the-
ory is that perceptual tension resolution, which is so often
described in traditional music theory but never physically
identified in acoustics, lies in the degree of convergence seen
here.

Assuming transition to be abrupt (since notes do not
commonly glide from one pitch to another in music) we
compute aΔt for the succeeding common subharmonic and aΔt for its preceding corresponding subharmonics and simply
measure this degree of convergence as the difference between
the two. As such,

��𝑡 = �𝑡�푝 − �𝑡�푠 (22)

where �𝑡�푠 refers to the �𝑡 of the succeeding chord and �𝑡�푝
refers to the �𝑡 defined by its nearest preceding subharmon-
ics.

This can be normalized by dividing by 𝑇�푠�푢�푏 such that

��𝑡̂ = �𝑡�푝 − �𝑡�푠𝑇�푠�푢�푏 (23)
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Figure 13: Trajectories of 𝑘�푖𝑡�푖 in different states of tension development (states of convergence).

where ��𝑡̂ denotes normalized ��𝑡 and 𝑇�푠�푢�푏 refers to that of
its succeeding chord.

��𝑡 is, thus, a quantification of the tension; Δ𝑡 is released
over the transition at the wave period of the succeeding
common subharmonic.

According to our theory, tension resolution is perceived
in the release of this tension across each transition. Thus,
mathematically,

𝜀 {𝑋1 󳨀→ 𝑋2} ∝ ��𝑡̂�푋1�㨀→�푋2
(24)

where 𝜀 denotes the perceptual resolving effect of tension
release and ��t̂X1�㨀→X2 denotes the ��t̂ across the transition
of chord X1 to chord X2.

Since resolution (tension release) [18, 42] in harmony
progression is perceived in the convergence of �t̂, what we
will refer to as complication (build-up of tension or negative
resolution) is seen in its divergence, where ��t̂ < 0 and𝜀{X1 󳨀→ X2} is negative.

Three possibilities arise when looking at 𝑇�푠�푢�푏 and�𝑡 from
this perspective, bywhichwe can divide transitional harmony
into three classes. As illustrated in Figure 13, these are as
follows.

(1) Resolution, also called tension release: this is themost
common occurrence and occurs with the convergence
of Δt (i.e., �𝑡�푝 > �𝑡�푠) and a positive ��𝑡. The larger
the ��𝑡, the larger the perceptual tension release.

(2) Complication, also called tension buildup: this is
the least common occurrence and occurs with the
divergence of Δ𝑡 (i.e., �𝑡�푝 < �𝑡�푠) and a negative ��𝑡.
Just as negative aesthetics may be used expressively in
a painting, it may similarly be used in music [73]. The
larger the magnitude of��𝑡, the larger the perceptual
tension buildup. Complications usually only occur
when the preceding𝑇�푠�푢�푏 is equal or nearly equal to the
succeeding 𝑇�푠�푢�푏. Musically speaking, it usually occurs
when a simpler chord is followed by a more complex
chord of the same root.

(3) Excursion: Because of the circular nature of the musi-
cal chroma, the preceding 𝑇�푠�푢�푏 and the succeeding𝑇�푠�푢�푏 may be computed to differ by up to 6 semitones
in either direction. When the difference is 1 or 2
semitones, this corresponds to a neighboring note,
and the collective (uplifting or detrimental) effect of
melodic movement (i.e., melody) across each note of
the chord can overpower the effect of harmony. In

such cases, our ears are persuaded to identify �𝑡�푝
with [𝑘�푖𝑡�푖]�푚�푎�푥 −[𝑘�푖𝑡�푖]�푚�푖�푛 of the nearest preceding 𝑇�푠�푢�푏.
When this happens, [𝑘�푖𝑡�푖]�푚�푎�푥 and [𝑘�푖𝑡�푖]�푚�푖�푛 move in
the same direction; hence, neither convergence nor
divergence is perceived. There are 2 such cases as
follows.

(a) Escalation: this occurs when each [𝑘�푖𝑡�푖] shortens
simultaneously, 𝑇�푠�푢�푏 shortens by a factor equiv-
alent to 1 or 2 semitones (21/12 to 22/12 times),
and 𝑓�푠�푢�푏 rises, producing the uplifting effect of
melodies rising by 1 or 2 semitones.

(b) Descent: this occurs when each [𝑘�푖𝑡�푖] lengthens
simultaneously,𝑇�푠�푢�푏 lengthens by a factor equiv-
alent to 1 or 2 semitones (21/12 to 22/12 times),
and 𝑓�푠�푢�푏 falls, producing the detrimental effect
of melodies falling by 1 or 2 semitones.

It is fascinating to note how the perceptual development
(build-up and resolution) of tension that is so often described
in music [18, 42] but never identifiable with an acoustic
attribute may here be visualized in the convergence and
divergence of common subharmonics. Figure 13 further
illustrates how 𝑘�푖𝑡�푖 trajectories reflect the development of
tension build-up and release. Additionally, trajectories for
excursions are illustrated in the same figure.

Returning to Figure 12, the transitions between each
chord are labeled 1 to 7 in the figure and correspond to 1 to
7 as follows.

(1) The song starts off with a C#m chord. Hence, the
common subharmonic is observed around a wave
period of c#. Our ears adhere especially to the shortest
one, which is at c#2. Large Δt is attributed to the
complex tensions within a minor chord. At the region
marked 1, this transits to a C#m/B chord. The tension
built up with the divergence of Δt may be visualized
in the divergence of the arrows in the figure (of which
the dotted ones across the plot are used to indicate
the continuation of subharmonics, i.e., 𝑘�푖𝑡�푖that do not
change). Both perceptually in music and acoustically,
as defined above, this translates to a further compli-
cation to the existing minor tension.

(2) At region 2, there is a convergence to a momentary
(half-bar) low-tension A chord.The uplifting effect of
a large tension release, ��𝑡̂ ≫ 0, is counterbalanced
by the detrimental effect of a fallingmelodic sequence
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(lengthening 𝑇�푠�푢�푏), adding to the complexity of the
song.

(3) At region 3, A transits to aD/F#, which is aNeapolitan
chord. The low f# bass extends over 2 octaves below
the treble notes, putting a strong 𝑇�푠�푢�푏 at a nonroot
period of f#1 and creating an amount of stationary
tension that is unusual for a major chord. (In such
cases, there is usually another common subharmonic
with lower Δ𝑡 but at a wave period corresponding to
a root at a much larger 𝑇�푠�푢�푏.)

(4) At region 4, the Neapolitan chord resolves to the
Dominant 7th, marked G#7 in the figure, with a large
perceptual resolution that is signature to bII6-V7

transitions in music [42]. This large tension release is
visualized as a large convergence in the subharmonic
plot as indicated by the arrows.

(5) Musically, the Dominant 7th typically plays the role
of building an anticipation for the upcoming return
to the Tonic [42]. Beethoven enhanced this func-
tion particularly well with a double suspension with
staggered resolutions in regions 5a through 5c. The
subharmonic plot gives tangibility to the perceptual
details with suspension-resolution long theorized
about in music that can now be affirmed with visu-
alization.

(a) At region 5a, the transition from the G#7 pro-
gresses to what is labeled C#m. However, this
C#m is functionally still a G# with a double
suspension of the 3rd (b#) to a 4th (c#) and the
5th (d#) to a 6th (e), respectively. The perceptual
complication that arises with this transition
can be visualized in the subharmonic plot as
indicated by the divergence of the green and
cyan arrows, respectively. The deviation of the
suspended notes from the primary triad is
visualized as a deviation of their 𝑘�푖𝑡�푖 from 𝑇�푠�푢�푏.

(b) At region 5b, the tension resolution with the
6th being resolved back down to the 5th can
be visualized in the subharmonic plot by its𝑘�푖𝑡�푖 resolving back to 𝑇�푠�푢�푏 as indicated by the
convergent cyan arrow. The continuation of the
suspended 4th is visualized in the dotted green
arrow.

(c) At region 5c, the tension resolution with the
4th being resolved back down to the 3rd can be
visualized in the subharmonic plot by its 𝑘�푖𝑡�푖
resolving back to 𝑇�푠�푢�푏 as indicated by the solid
green arrow. In preparation for a major reso-
lution back to the upcoming tonic, Beethoven’s
touch of genius combines this resolution with a
simultaneous complication in the introduction
of the 7th at this point. This is visualized in the
deviation of its 𝑘�푖𝑡�푖 away from 𝑇�푠�푢�푏 as indicated
by the divergent solid yellow arrow.

(6) At region 6, the Dominant 7th is resolved back to
the Tonic with a tension release unique to V7-tonic
cadences that is so immense that it is has been
long established as the de facto cadence for the end
of musical passages [42]. This immense perceptual
release of tension, too, is identifiable in the subhar-
monic plot. From the figure, it may be seen that the
common subharmonic, 𝑇�푠�푢�푏, of C#m (located at the
period of c#1 this time, because of the g#2 in purple)
lies right in themiddle of two common subharmonics
of G#7 (located at the periods g#1 and g#0). This
unique subharmonic behavior allows our ears to quite
possibly identify with both 𝑘�푖𝑡�푖 for the preceding
�𝑡 making �𝑡̂�푝 significantly larger than its �𝑡̂�푠. Its
staggering convergence produces an immense sense
of tension resolution with this transition.

(7) A final landmark that is interesting to note is at region
7, where the triad in the treble flips from the 1st

inversion to the 2nd inversionwhile the chord remains
unchanged. Notice that this brings about no change
to both 𝑇�푠�푢�푏 and �𝑡̂ while ��𝑡̂ = 0. This, again, shows
how subharmonic analysis agrees with music theory
where, despite the change of notes, harmony remains
the same at this point.

In this section, we have seen how, even in the context of
transitional harmony, perceptual tensions and resolutions in
a song may be visualized in its subharmonic modulation. We
will move on to see howwell numerical values computedwith
such modulations verify against listening tests and chord use
statistics.

5. Experiment and Results

For both stationary and transitional harmony, tensions com-
puted from our models show strong correlations with con-
sonance rankings and historical chord use statistics. Table 1
tabulates a summary of the results of our experiment.

We will explain each of these results in detail in the
following subsections.

5.1. StationaryHarmony. For stationary harmony,we take the
overall tension of a chord to be a simple weighted sum of 𝑇��푓
and 𝑇��푡

𝑇��푓|��푡 = 𝑤�푖𝑇��푓 + 𝑤�푠𝑇��푡 (25)

where 𝑇��푓|��푡 is overall tension, 𝑇��푓 and 𝑇��푡 are taken to
represent the tensions contributed by interharmonic and sub-
harmonic modulations, respectively (normalized by linearly
scaling to fit between 0 and 1), and𝑤�푖 and𝑤�푠 are their weights,
or summing coefficients respectively, where 𝑤�푖 + 𝑤�푠 = 1 and
0.61 and 0.39 are found to provide a good distribution.

We use a simple estimate of 𝑇��푓, taking
𝑇��푓 = 𝐶1 (�𝑓) + 𝐶2 (�𝑓) (26)

where 𝐶1(�𝑓) and 𝐶2(�𝑓) are a tally of interharmonic
modulations (given by (10)). By visual inspection of the
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Table 1: Summary of correlations with consonance rankings and historical chord use.

Stationary harmony Transitional harmony

Dyads/intervals
(2 notes)

Triads
(3 notes)

Triads & tetrads
(3 or 4 notes)

All transitions All transitions
Excl. comp. Resolutions

r= 0.922 r=0.907 r= 0.903 r= 0.970 r= 0.996
p=0.0001 p=0.0000 p=0.0000 p=0.0000 p=0.0000

interharmonic plot, regions of dissonance are defined by𝑟�푙�표�푤�푒�푟 = 0.95 and 𝑟�푢�푝�푝�푒�푟 = 1.1 for 𝐶1(�𝑓) and 𝑟�푙�표�푤�푒�푟 = 1.5
and 𝑟�푢�푝�푝�푒�푟 = 2.8 for 𝐶1(�𝑓).

For𝑇��푡, we use (�̃𝑡)2, where �̃𝑡 is given by (21) preempha-
sized with 𝑐 = 2.1 across a range of 𝑚 = 5. (A preemphasis
of just over 2 provided the sufficient discrimination without
driving data into saturation. A broad range of 𝑚-values
are suitable but we settled on a smaller value of 5 for
computational simplicity.)

Numerous previous authors have performed notable
work for stationary harmony both within and outside the
psychophysical context [8, 12, 13, 18, 21–25, 43, 53, 62–64]. For
dyads (intervals, or two-note chords) and triads (three-note
chords), we the use precollated information in Tables 2–5
from Stolzenburg [43] for comparison. Dyads (intervals) are
compared against the results of an average across 7 notable
studies collated by Schwartz et al. [54] on a ranking of 12
chords. Stolzenburg adds the unison to Schwartz’s list, which
he reasonably assumes to be the most consonant, hence, we
have appropriately included it as well. Triads are compared
to results from an experiment by Johnson-Laird, Kang, and
Leong [13] as cited in Stolzenburg [43]. For consistency
with Stolzenburg’s statistics in the comparison, these were
first converted to ordinal rankings before computing the
correlation as practised by Stolzenburg [43]. Table 2 lists
our correlations for dyads and triads in stationary harmony
against known relevant work as taken from Stolzenburg’s
[43]. A detailed tabulation of all available values for each
chord is provided in the appendix.

5.2. Transitional Harmony. For transitional harmony, ��𝑡
from (22) is suitable for hand-computation of transitional
harmony across individual locations of succeeding common
subharmonics, �𝑡�푠, across the soundscape. While this is
advantageous for visualizing individual complications and
resolutions at multiple locations across the tensional sound-
scape, it requires manual identification of a modal �𝑡�푠 for
every transition which can be ambiguous for particularly dis-
cordant harmonies. For a consistent programmatic approach
with larger datasets, we take the measure of overall ��𝑡 of a
transition defined by

�̃�𝑡 = (1𝑛
�푁∑

�푗=1, ∀��푡𝑠,𝑗<(1/2)��푇𝑠𝑢𝑏

( ��𝑡̂�푗
�𝑡�푠,�푗𝑇�푠�푢�푏,�푗)

�푐)
1/�푐

(27)

where �̃�𝑡 is representative of overall tension resolved, ��𝑡̂�푗,
�𝑡�푠,�푗, and 𝑇�푠�푢�푏,�푗 refer to individual candidates of ��𝑡̂, �𝑡�푠,
and 𝑇�푠�푢�푏, respectively, 𝑁 is the range of nodes considered,𝑗 iterates through all relevant common subharmonics of the
succeeding chord, �𝑇�푠�푢�푏 denotes the distance between two
adjacent 𝑇�푠�푢�푏,�푗, Σ�푁�푗=1, ∀��푡𝑠,𝑗<(1/2)��푇𝑠𝑢𝑏 denotes summing across
all values of 1 < 𝑗 < 𝑁 wherever �𝑡�푠,�푗 is less than half
the distance between the adjacent 𝑇�푠�푢�푏,�푗 on either side, 𝑛 is
the number of nodes summed, and 𝑐 is the preemphasis as
explained with (21).

This effectively computes the preemphasized, weighted,
and compensated mean ��𝑡 across all eligible common
subharmonics within a range of𝑁 for a given transition. 𝑇�푠�푢�푏
weights down larger subharmonics which are less significant
according to the theory. (It is a reciprocal as opposed to
(21) because greater pleasure is associated with larger tension
released.) �𝑡�푠,�푗 compensates for the fact that, apart from
tension resolution alone, stationary consonance also affects
one’s preference for the succeeding chord.�𝑡�푠,�푗 < (1/2)�𝑇�푠�푢�푏,�푗
effectively sets the criterion for a node to be considered a
common subharmonic. In our experiments, we set𝑁 = 9. (A
broad range of𝑁will work, but we choose a smaller value for
computational simplicity. Larger values may be required with
larger range or dataset size.) In consideration of divergent
transitions in the dataset, we set 𝑐 = 1 (no preemphasis)
because divergent transitions have negative ��𝑡 which can
be distorted by preemphasis.

With transitional harmony, conducting an accurate lis-
tening test is less straightforward. Rather than attempting
to acquire a small number of fresh unproven opinions, it
is reasonable to use statistics from a large number of well-
esteemed premade decisions. A simple way to measure how
well numerical values of subharmonic transition agree with
the music theorists’ school is to compare them with statistics
of an expert music theorist’s chord use. Capturing chord-
use statistics from music score is again, however, a labor-
intensive process requiring domain expertise [46, 47, 74].
Details such as melody-harmony discrimination, transition
onset, and root ambiguity (e.g., Dm7/F versus F6) are often
not precisely defined in a song. We find the largest relevant
data readily available that also meets chord-spelling preci-
sion requirements in Tymoczko’s Study on the Origins of
Harmonic Tonality [45]. In this study, Tymoczko interpreted
and recorded the statistics of 11,000 chord transitions from
Palestrina’s [75] corpus. Palestrina was highly regarded for
his style of harmony by Helmholtz himself [76]. He is widely
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Table 2: Proposed and existing correlates of stationary harmony.

Method Dyads Triads
r (p) r (p)𝑇Δ�푓|Δ�푡 (Proposed) Equal Temperament 0.922 (0.0000) 0.907 (0.0000)

Log Periodicity Just [43] 0.982 (0.0000) 0.831 (0.0002)
Rel. Periodicity Just [43] 0.982 (0.0000) 0.846 (0.0001)
Log Periodicity Rational [43] 0.936 (0.0000) 0.813 (0.0004)
Rel. Periodicity Rational [43] 0.936 (0.0000) 0.808 (0.0004)
Rel. Periodicity Pythagorean [43] 0.817 (0.0003) -
Rel. Periodicity Kirnberger III [43] 0.796 (0.0006) -Ωmeasure [62] 0.886 (0.0000) -
Consonance Raw Value / Degree∗† 0.978 (0.0000) 0.826 (0.0016)
Dual Process [13]‡ - 0.791 (0.0006)
Percentage Similarity [53]‡ 0.977 (0.0000) 0.802 (0.0005)
Instability [18]‡ - 0.698 (0.0040)
Tension [18]‡ - 0.599 (0.0153)
Sonance Factor$ 0.982 (0.0000) 0.434 (0.0692)
Generalized Coincidence [63]‡ 0.841 (0.0002) -
Consonance Value‖ 0.940 (0.0000) 0.755 (0.0014)
Dissonance Curve [21]‡ 0.905 (0.0000) 0.723 (0.0026)
Pure Tonality [22]‡ 0.938 (0.0000) 0.675 (0.0162)
Complex Tonality [22]‡ 0.738 (0.0020) -
Roughness [23]‡ 0.967 (0.0000) 0.352 (0.1193)
Sensory Dissonance [24, 25]‡ - 0.607 (0.0139)
Critical Bandwidth [12]‡ - 0.570 (0.0210)
Temporal Dissonance [8]‡ - 0.503 (0.0399)
Gradus Suavitatis# 0.941 (0.0000) 0.690 (0.0045)
∗Raw Value was used for Dyads and Degree was used for Triads.
†Fotlyn, 2012, as cited in [43]
‡as cited in [43]
$Dyads from [64] and Triads from Hofmann-Engl, 2004, both as cited in [43]
‖Brefeld, 2005, as cited in [43]
¶Dyads from [23] and Triads from Hutchinson & Knopoff, 1979, both as cited in [43]
#Euler, 1739, as cited in [43]

considered amongst music theorists to be the pinnacle of
contrapuntal harmony [77].

Table 3 lists �̃�𝑡 against frequencies of occurrence for
each of the 17 most frequently used chords that follow V as
read-off Tymoczko [45]’s chord tendency histogram. C, D,
X↑, and X↓ indicate the convergence type of the progression.
Just intonation was used as being opposed to equal tempera-
ment in this case to be consistent with Palestrina.

Their correlations are listed in Table 4. �̃�𝑡 shows a sig-
nificantly strong positive correlation of 0.903 with Palestrina’s
chord tendencies in general. It is close to perfect at 0.996
for resolutions since the programmatic version of the model
was designed with resolutions in mind. Complications may
be interpreted as the negative release of tension. Even though
a large number of contributing ��𝑡̂�푗 are negative, only one
negative �̃�𝑡 can be seen in the table due to the influence
of nonnegative candidates. Nevertheless, �̃�𝑡 shows a strong
negative correlation of -0.761 with [45] for complications
(agreeing with the fact that this resolution is negative).
As earlier explained, with excursions the perception of a

succeeding chord is also influenced by the rising or falling of
parallel melodies. Unfortunately, descending excursions were
insufficiently popular in Palestrina and only V-IV was being
tallied. For escalating excursions, however, we have enough
statistics to compute a correlation of 0.863. We have also
computed the correlation across all other chords separately
from complications (because, as explained, they correlate
negatively) to be 0.970.

6. Discussion

Addressing the Fundamental Questions of Psychoacoustic Har-
mony. At this point, let us address the fundamental questions
of psychoacoustic harmony as promised at the start of this
paper in the context of subharmonic modulations. We will
begin with question 2 and leave the first question for the last.

(2) We discussed the definition and explanation of sta-
tionary harmony, i.e., what sounds good and why, or,
mathematically, to quantify 𝜀{𝑋�푛}, where 𝜀{} denotes
the harmonious effect of and𝑋�푛 represents chord 𝑛.
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Table 3: Tabulation of �̃�𝑡 for chords that most commonly follow V against Palestrina’s chord tendencies as cited in [45].

I V7 iii6 V/V V2 vi V6/V vi7 i iii vi6 I6 ii6 vii∘ V6 ii IV
Convergence∗ C D D C D X↑ C X↑ C C X↑ C C D D C X↓
Frequency† 42 7 6 2 2 11 1 1 0 4 1 5 2 0.5 2 2 6Δ̃Δ𝑡 444 -1.5 1.8 1.9 0.4 3.4 2.3 1.9 6.9 1.2 0.3 39.6 1.9 7.4 4.3 2.5 192
∗States of convergence:
C denotes convergence of ��̂푡.
D denotes divergence of ��̂푡.
X↑ denotes escalating excursion of ��̂푡.
X↓ denotes descending excursion of ��̂푡.
†In percent, as read off the histogram of chord tendencies from [45] computed over a dataset of 11000 chords from Palestrina.

Table 4: Tabulation of correlations between �̃�𝑡 and Palestrina’s chord use statistics as collated in [45]. Correlations are listed in the top row
with corresponding significance in brackets below.

Resolutions∗ Complications† Excursions‡ All
excl. comp.† All

Escalating Descending§

0.996 -0.761 0.863 - 0.970 0.903
(0.0000) (0.1353) (0.3366) (0.0000) (0.0000)
∗Our model is designed to compute tension release in resolution.
†Complications in music may be interpreted as negative tension resolutions; hence, correlation seen is negative.
‡Excursions usually encompass tension release; however, apart from resolution alone, the perception of succeeding chords are also influenced by the rising or
falling of parallel melodies.
§Apart from the descending excursions leading to IV, insufficient other descending transitions are recorded to compute its correlation.

With large subharmonic tension being perceived as
dissonance while small subharmonic modulations are
perceived as consonance, the aesthetics of a chord may
be visualized in the subharmonic tension acting on its
shortest common subharmonics. Mathematically, they
are inversely related. As described by (19), 𝜀{𝑋} ∝1/�𝑡̂.

(3) We have the definition and explanation of transitional
harmony, i.e., what sounds good, why, and when, or,
mathematically, to quantify 𝜀{𝑋1 󳨀→ 𝑋2}, where
‘ 󳨀→’ denotes transition from one chord to another.

The aesthetics of a chord transition may be visualized
in the release of subharmonic tension at the shortest
common subharmonics of the succeeding chord. As
explained in (22) and indicated by the arrows in
Figure 12, this refers to the transition to the shortest
common subharmonics of the succeeding chord from
the nearest subharmonics of the preceding chord. Thus,
resolution (tension release) in a chord transition is
perceived in the convergence of �𝑡̂ (where ��𝑡̂ > 0)
while what we call complication (build-up of tension
or negative resolution) is seen in its divergence (where
��𝑡̂ < 0). Mathematically, as described by (24),𝜀{𝑋1 󳨀→ 𝑋2} ∝ ��𝑡̂�푋1�㨀→�푋2

.

(4) We have the following phenomena.

(a) A chord that sounds better than another out of
context can sound worse than being in context
[42]. Given 𝜀{𝑋2} > 𝜀{𝑋3} this shows that𝜀{𝑋1 󳨀→ 𝑋2} < 𝜀{𝑋1 󳨀→ 𝑋3}

The section on subharmonic modulations differentiates
between stationary tension and transitional tension.
The tension release brought about by a transition to a
chord may be large even for high tension succeeding
chords. To prove this, we will use an example with𝐸7, 𝐺, and 𝐴𝑚7. Taking 𝐸7 = {𝑏3, 𝑑4, 𝑒4, 𝑔#

4}, 𝐺 ={𝑔3, 𝑏3, 𝑑4, 𝑔4}, and 𝐴𝑚7 = {𝑎3, 𝑐4, 𝑒4, 𝑔4, 𝑎4}, the
stationary subharmonic tension for 𝐺 and 𝐴𝑚7 may
be computed by (18) to be �𝑡̂�퐺 = 0.902% and �𝑡̂�퐴�푚7 =6.849%, respectively. Thus, 𝜀{𝐺} > 𝜀{𝐴𝑚7}, whereas
the transitional subharmonic resolution (tension res-
olution) for 𝐸7 󳨀→ 𝐺 and 𝐸7 󳨀→ 𝐴𝑚7 may be
computed by (22) to be ��𝑡̂�퐸7�㨀→�퐺 = 8.783% and
��𝑡̂�퐸7�㨀→�퐴�푚7 = 10.748%, respectively. Thus, 𝜀{𝐸7 󳨀→𝐺} < 𝜀{𝐸7 󳨀→ 𝐴𝑚7} despite the fact that 𝜀{𝐺} >𝜀{𝐴𝑚7}.
(b) A chord that sounds better than another in one

context can sound worse than being in another
context [42]. Given 𝜀{𝑋4 󳨀→ 𝑋2} > 𝜀{𝑋4 󳨀→𝑋3} this shows that 𝜀{𝑋1 󳨀→ 𝑋2} < 𝜀{𝑋1 󳨀→𝑋3}

With reference to (22) and our answer in question
3, since our ears identify the subharmonics of pre-
ceding notes that correspond to the succeeding com-
mon subharmonic, transitional harmony is contextual.
Continuing from our answer to question 4𝑎, we take𝐷7 to be 𝐷7 = {𝑐4, 𝑑4, 𝑓#

4, 𝑎4}. The transitional
subharmonic resolution (tension resolution) for𝐷7 󳨀→𝐺 and 𝐷7 󳨀→ 𝐴𝑚7 may be computed by (22) to be
��𝑡̂�퐷7�㨀→�퐺 = 11.421% and ��𝑡̂�퐷7�㨀→�퐴�푚7 = 4.540%,
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respectively. Thus, 𝜀{𝐷7 󳨀→ 𝐺} > 𝜀{𝐷7 󳨀→ 𝐴𝑚7}
despite the fact that 𝜀{𝐸7 󳨀→ 𝐺} < 𝜀{𝐸7 󳨀→ 𝐴𝑚7}.

(5) phenomenon that the transition from a low-tension
chord to a high-tension one can still bring about the
effect of tension release (resolution). Given 𝜀{𝑋1} <𝜀{𝑋2} this shows that 𝜀{𝑋1 󳨀→ 𝑋2} > 0.
The answer to this is in the independence of stationary
and transitional tension, as established in our answer
to Question 4𝑎.
Taking 𝐸 = {𝑏3, 𝑒4, 𝑔#

4} and 𝐴𝑚7 = {𝑎3, 𝑐4, 𝑒4, 𝑔4, 𝑎4},
the transitional subharmonic resolution (tension reso-
lution) for 𝐸 󳨀→ 𝐴𝑚7 may be computed by (22) to
be ��𝑡̂�퐸�㨀→�퐴�푚7 = 4.323%. The stationary subharmonic
tension for 𝐸 and 𝐴𝑚7 may be computed by (18) to
be �𝑡̂�퐸 = 0.902% and �𝑡̂�퐴�푚7 = 6.849%, respectively.
Hence, 𝜀{𝐸 󳨀→ 𝐴𝑚7} > 0 despite the fact that𝜀{𝐴𝑚7} < 𝜀{𝐸}.

(6) There is the phenomenon that the effect of harmony
is greater than the sum of its parts [18, 60]. 𝜀{𝑥1 +𝑥2 +𝑥3} ≫ 𝜀{𝑥1} + 𝜀{𝑥2} + 𝜀{𝑥3}
Apart from certain exceptions with rational intonation
and octaves, the stationary tension of any combination
of unique notes is observed to be larger than zero
on the subharmonic plot. Hence, �𝑡̂{�푥1+�푥2+�푥3} > 0.
Likewise, the stationary tension of each note on its
own is observed to be zero on the subharmonic plot.
Hence, �𝑡̂{�푥1} = 0, �𝑡̂{�푥2} = 0, and �𝑡̂{�푥3} = 0 for
all 𝑥1, 𝑥2, and 𝑥3 within musical range. Thus, by (19),𝜀{𝑥1 + 𝑥2 + 𝑥3} ≫ 0, whereas by (20) 𝜀{𝑥1} = 0,𝜀{𝑥2} = 0, 𝜀{𝑥3} = 0, and 𝜀{𝑥1} + 𝜀{𝑥2} + 𝜀{𝑥3} = 0.
Therefore, 𝜀{𝑥1 + 𝑥2 + 𝑥3} ≫ 𝜀{𝑥1} + 𝜀{𝑥2} + 𝜀{𝑥3}.

7. Conclusion

In this paper the notion of interharmonic and subharmonic
modulations was proposed as a psychophysical basis for both
stationary and transitional harmony.

In the domain of stationary harmony (tension in chord
sonorities), this work presents subharmonic modulations
as an integral complement to interharmonic modulations
and shows how perceptual tensions [18, 36, 58, 59] and
consonances [17, 19, 44] may be visualized through which.

In the domain of transitional harmony (resolution in
chord progression), it unlocks the means of physically identi-
fying, quantizing, and, thus, verifying perceptual resolutions
and complications [18, 42] in acoustic features that have until
now remained abstract and nontangible.

This work can be seen to bind prevailing psychoacoustic
schools into a single theory. The Helmholtz school [3, 8,
12–17, 19, 20, 23] is represented by the interharmonic �𝑓
in (11). The Pythagorean school [5, 6, 11] generally seeks
small values of integer 𝑘�푖 in (15) and (16) while requiringΔ𝑡�푖 to be zero. Taking this further, if Δ𝑡�푖 is ignored, 𝑓�푠�푢�푏 in
(15) would then correspond to the fusion tone in Stumpf ’s
tonal fusion theory [3, 30]. Euler’s gradus suavitatis [11]
graded the goodness of 𝑘�푖-combinations for Δ𝑡�푖 = 0. The
adoption of 12-tone equal temperament [12, 33, 34] sought

to evenly distribute interharmonic �𝑓 in (11). Since the
aforementioned conditions may be generalized by a central
theory of modulations across adjacent (interharmonic) and
distant (subharmonic) sinusoids which stems from (3), this
effectively integrates them into a general theory.

Computed values correlate strongly with perception and
harmony-use statistics for both stationary (tension) and
transitional (resolution) harmony.

Finally, this paper presented a psychoacoustic solution to
the five fundamental questions of harmony.
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